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Fig. 5. The x dependence of they component of the electric field strength of

the superposition of the two modes from Figs. 3 and 4 at z = O.
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Fig. 6. Longitudinal power flow (Poynting vector) of the superposition of

the two fundamental modes.

III. PRINCIPAL RSSULTS

From (15) the power division factor k may become larger than

one, in which case the power transported on guide A is negative.

This means that the power on this transmission line is trans-

ported in the – z direction. Nevertheless, inspecting both guides

together the power transport still goes in the + z direction. If k is

less than or equaf to one, the magnitudes of the scattering

parameters at z = 1 can be determined:

lS311=~~=~{k -kccrs(d/L)}/{l+k} (19)

Fig. 2 shows a diagram of the scattering parameters versus the

normalized coupler length for a power division factor k = 0.8.

Because the magnitude of Szl never becomes equal to zero, it can

be recognized that an incomplete periodical coupling is submit-

ted.

The phases of the S parameters can be calculated from the

electromagnetic fields ((4) and (5)). It has been assumed that they

have zero phases for z = O. Therefore the phases of these fields at

z = 1 and at significant coordinates (x, y) of each line are equal

to the phases of the corresponding scattering parameters.

If the structure is electromagnetically symmetric, Pi I and Pi’,

as well as F&II and PjI’11, are identical. This implies that k

becomes one. Thus (18) and (19) of this generalized theory

converge into (1) and (2) of the common coupler theory.

The x dependence for the ~, field components of the first

two single modes on the guide are shown in Figs. 3 and 4. The

superposition of these two modes described above is shown in

Fig. 5. The resulting power flow in the z direction is shown in

Fig. 6. At z = O no part of the power is transported between

–xz < x < –xl. For increasing values of z, part of the power

flow changes to this line, but at z = I,. a nonnegligible part of

the power is still transported between +xl < x < +x2. This

demonstrates the incomplete coupling at electromagnetically

asymmetrical coupled lines.

IV. CONCLUSIONS

The method presented here is an extension of the well-known

even- and odd-mode analysis for symmetrical coupled lines. The

power consideration allows an integral formulation of the prob-

lem and can also be used for asymmetrical problems. In these

cases the coupling is incomplete in the sense that only a part of

the total power is coupled between the two guides. The principles

of such coupler applications have been demonstrated using the

example of an image guide coupler with a premagnetized ferrite

slab.
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,4fMJ-act—We examine Lewin’s theory, which describes an E-plane

symmetrical tee jnnction by a peculiar equivalent circuit with only three

parameters. It is shown that although his theory is formally correct, its

circuit parameters depend on the amplitudes of reflected waves. An im-

proyed theory corrects this fault.
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Fig. 1. E-plane T junction, longitudinal section. Lewin’s theory imposes the

termmal condition that there be loads at z = dl and – d, and that the

ingoing wave fed from the upper arm have an E, of unit ampjitude at y = b.

On the other hand, our theory does not use such specific boundary condi-

tions.

1. INTRODUCTION

Various circuit parameters for tee junctions have been pro-

posed. Let us consider some typicaf examples. Allanson, Cooper,

and Cowling (ACC) [1] proposed a simple equivalent circuit for

tee junctions by using the idea of characteristic points. If the

reference planes are located at characteristic points, ACC’S equiv-

alent circuit is composed of only a transformer and a reactance.

For an E-plane symmetrical tee and an H-plane symmetrical tee,

they determined the four parameters of two characteristic points,

the winding ratio of the transformer, and the reactance, employ-

ing a method suggested by Frank and Chu [2]. Sharp [3] devised

an excellent method of analyzing the electric performance of tees

having arbitrary cross sections. This method yields an admittance

matrix. For symmetrical tees, he determined four independent

elements of the admittance matrix. Marcuvitz [4] adopted a

variational approach for E-plane symmetrical tees and H-plane

symmetrical tees. The stationary values yield three admittances of

a n-type equivalent circuit consisting of four admittances. The

remaining one is determined by the equivalent static method.

From the ~-type elements, he also calculated ACC’S parameters

and so on. Lewin [5] also treated variational equations for an

E-plane symmetrical tee, and gave a peculiar equivalent circuit

described by only three parameters. However, he did not make

any numerical calculation of the three parameters.

The tees above are symmetric. Generally, any symmetrical tee

supporting only the fundamental mode can be described by four

independent parameters. In fact, we have seen in the above that

ACC, Sharp, and Marcuvitz described symmetrical tees by four

parameters. On the other hand, Lewin represented the E-plane

symmetrical tee of Fig. 1 by a peculiar equivalent circuit with

only three parameters. This seems to be curious. The present

paper reexamines Lewin’s theory. We show that although his

theory is formally correct, his circuit parameters depend on the

amplitudes of waves reflected on the loads of Fig. 1. We give an

improved theory. Our theory yields the circuit equations in a

hybrid representation whose matrix has four independent ele-

ments. The circuit equations produce a simple equivalent circuit

(Fig. 2) that is composed of two parts of a two-port circuit and a

one-port circuit, According to the numerical calculation of the

hybrid matrix, its determinant is nearly equal to zero, so the

number of independent hybrid elements reduces to approxi-

mately three. The element lee of Fig. 2 then vanishes. In the case

of 1,<,= O, Fig. 2 is equivalent to Lewin’s equivalent circuit. Thus

Lewin’s equivalent circuit with only three parameters holds ap-

proximately.

< > < >
lee Q00

Fig. 2 An equivalent circuit based on the cu’cult equations (18a) and (18 b),

which is composed of two parts of a two-pol t circuit and a one-port circuit;

tan ~1,, = (H~e _ H Hee)/H,,, n2 = (H,,/1Y~=)2/(1 + tan= d,,), b = I/H,,
– # tan .[,,, tm #

00 = I/HOO. Lewm’s equivalent circnit does not have the
element 1=8, and his circuit elements I?., B1, and K2 correspond to our b,

tanKIOO, and 2n2, respectively. (Lewin ongmally described the tee by a

three-port circuit. The equivalence of the two circuits is easdy ascertained

by examining their response to excitations which are even or odd with

respect to the z coordinate.)

II. LEWIN’S THEORY

Let us briefly review Lewin’s theory for the tee of Fig. 1, and

point out that his circuit parameters depend on the amplitudes of

waves reflected on the loads. He decomposes the junction field

E(z) = [E2(y, Z)]v=b into the even part ~(z) and the odd part

g(z); E(z) =f(z)+ g(z). The ~(z) and g(z) are determined by

the integraf equations obtained from a continuity condition at the

junction plane:

(A- B- f)cosKz+l-R

‘~K~b/2f(Z’){GJ~..( Z; Z{)+ G,~..(Z: -z’)} ~z’ (la)
o

(A+l?+jg)sinfiz

‘f/2~(z’){G,unc(z, Z’)- G,unc(Z; -z’)} dz; (lb)
o

with

G,unc( Z; Z’)

sin~lz – z’I exp(–r.lz–z’1)
._—

2~b
—+E

r,, b~=1

COS[ nn/b( Z + b/2)] C(2S[ rrm/b( Z’+ b/’2)]
+2’j —

r,, b
(2)

~=1

r,, a [(~7T/f7)2-K2]”2.

Here K is the propagation constant of the fundamental mode. R

is the reflection coefficient from the junction in the upper arm,

and it is referred to y = b. It can be expressed in terms of the

junction field:

(1+ R)/2 =1/b~b’2f(z1) dz= h. (3)

The quantities f and g are constants defined by the junction

field:

f = l/b{h’2f (z’) COS ~z’dz’
o

(4a)

g~l/b~’2g(z’)sin~ z’dz’. (4b)

A and B are the E, amplitudes of the reflected and the propagat-

ing wave in the right arm and the left arm, respectively. Both

amplitudes are referred to the z = O plane. They can also be
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expressed in terms of the junction field:

B–A+”f= [f(l-R1)(l -R2)+jg( R2-RJ]/(1– R1R2)

(5a)

–j(A+B)+g

=[g(l+R,)(l+ R,)+jjlRz -R,)] /(1- RIRJ. (5b)

RI and Rz are the reflection coefficients from the loads, and they

are referred to the z = O plane:

R,=[(z, –l)/(z, +l)]exp(–2jcti,), i=l,2.

From the above equations, Lewin derives the following equa-

tion for the normalized input admittance Y= (1 – R)/(l + R) at

y = b in the upper arm:

Y= jBO +1/2K2

[1/2(~+~)+j B1~~]/[1+1/2jBl( ~+~)] (6)

where the “circuit elements” BO, BI, and K2 are given by

~0 = (IC/2h2~2)~b’2dZ’~b’2 dZf( Z’)f(Z) b

{G,unc(z; Z’)+ G,unc(z; ‘Z’)} (7a)

B,= ( ~/b2g’)~b’2dz’~b’2 dzg(z’) g( Z) b

{G,unc(z;Z’)- G,Un.(Z; ‘z’)} (7b)

K1 = f2/hL. (7C)

Equation (6) for the input admittance yields Lewin’s equivalent

circuit (see Fig. 2).

All the equations above are valid. However, as will be proved

in the following, BO and Kz depend on the amplitudes of

reflected waves. Thus it is impossible to regard BO and K2 as

circuit elements, because the circuit elements of any linear wave-

guide should be independent of their excitation amplitudes. We

now prove this fact.

The load admittances YI and Yz or their reflection coefficients

RI and R2 are known. The amplitudes A and B are unknown

constants, which will be determined after the integral equations

are solved. Instead of this boundary condition, we can first give

an amplitude of the reflected wave in the right arm, and the one

in the left arm, for instance, A and B. In this case, A and B

appearing in the integraf equations (la) and (lb) are previously

given constants. YI, Y2 or Rl, R2 are then unknown constants,

which will be determined after the integral equations are solved.

We now choose A and B as independent known constants.

Taking account of (3) and (4a), we see from (la) that f(z) is

linear with respect to (A – B). Equations (lb) and (4b) yield that

g(~) is proportional to (A + B). So we can write

f(z) =fO(z)+(A - B) fl(z) (8a)

g(z) =( A+ B)g,(z) (8b)

where ~0(z), fl(z), and gl(z) are independent of A and B.

Substituting (8b) into (7b) and (4b), we see that BI is indepen-

dent of A and B. If fo(z) = O, the same is true of BO and K2.

However, this cannot happen. It is possible to put A = B = O as a

boundary condition, that is, no reflected waves in the right and

left arms. Supposing A(z) = O, we then have R = – 1 from (3).

So (la) gets reduced to the contradictory equation 2 = O. Thus we

conclude that fO( z) # O. Accordingly in (7a) and (7c) for BO and

K2, the (,4 – B) involved in the numerators and that in the

denominators cannot cancel each other. In other words, BO and

K2 depend on (A – B).

Lewin’s treatment has such a contradiction. Nonetheless we

would like to stress that his equivalent circuit holds approxi-

mately. This fact and a satisfying treatment will be given in the

next section.

III. AN IMPROVEDTHEORY

Our theory for the E-plane tee will not use any specific

boundary condition such as the load admittances, so the theory

holds in any boundary condition. We introduce voltage and

current according to Schwinger [6]: current < as the lowest mode

part of – ( ~p/Kz ) LfY with angular frequency o and magnetic

permeability ~, and voltage ~ as the integral of the electric field

across the ith arm multiplied by + 1 ( + for i = 2, – for i =1,3).

We then have the characteristic impedance of Z = l/Y= Kb.

They refer to the same planes of y = b and z = O as Lewin’s

planes. We also define six linear combinations as follows:

We can freely control three independent linear combinations.

Our theory chooses Is, 1., and VOfor the three combinations, and

we expand the junction field E(z) in terms of them:

jl?(z) =~(c,(z)l, +(,(z) l,–jcO(z)~). (10)

It is easy to verify that c, (z) and c,(z) are even functions and

that CO(z) is an odd function. The continuity of H,t at the

junction then yields three integral equations for CM(z), M =

s,e, o:

fM(z) = K/b’2
_ ~,2GJ””’(’; z’) ~M(z’) dz’

(11)

with

{

0, h’f=s

fM(z) = -Jmcos.., M=e (12)

-~sintcz, M=o.

Equations (11) can be easily transformed into variational equa-

tions by a standard method:

‘2~~2dz/~2d’’GJunc( z’:’) eM(z)’k[(z’)
B~ =

[J I
2

(13)

K “2 dzfM(z) EM(z)
– b/2

with

l/BM = ~~~,zf~(z) (M( Z) dz. (14)

Any asymptotic field components can be expressed in terms of

the junction field E(z) and lM, VM, M =s, e, o. Combining the

expression with the decomposition (10), we obtain the circuit

equations in a hybrid representation:

(15a)

10= – jHOOVo (15b)
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TABLE I

THEORETICAL CONSTANTS FOR THE E-PLANE SYMMETRICAL T JUNCTION

b/,lg

0.01

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 425

0 45

Hss

218.

42,3

19.3

11.2

7.06

4.63

3.08

2.04

1.30

0.991

0.71:

hybrtd elements

2 Hee

218

41.9

18.6

10 2

6.02

3 61

2.17

1 28

0.729

0.535

4

.f2 Hse

-218.

-42.1

-18.9

-10.7

-6.51

-4.08

-2.57

1

-1 59

-0.934

-0.683

-0.465

Hoo

0.00465

0.0231

0.0452

0.0655

0 0825

0.0960

0.104

0.105

0.0985

0 0915

0.0795

(HssHee-Hse Z)/Hss

( = -tan <lee )

o

0.0

0.0

00

0.o1

0 oi

0.01

0 02

0 029

0 033

0 037

with

%-jb” fM(z)f,v(z)~z (~,~=S>~>O) (16)
– h/2

It is easily proved with the aid of (11) that the hybrid matrix is

symmetric: Hw~ = H~~. The consideration of the parity of

~kf (z) and c~ (z) immediately produces H,. = H,O = O. So the

hybrid matrix has four independent elements, Note that the

diagonal elements are equal to the inverse stationary values:

H~~ = l/B~. On the basis of the circuit equations (15a) and

(15b) we can represent the E-plane tee by a two-port circuit and

a one-port circuit. Fig. 2 is an example.

The numerical analysis of (11) and (16) produces Table I. Here

Ag = 277/K. The last column represents the determinant of the

matrix in (15a) divided by H,,, which is equal to – tan K1,, in

Fig. 2. Each value of this table is accurate to within an error of

~ 1 in its last place over most of 0< b/Xg <0.5. Using this table,

we can calculate the parameters of Fig. 2, ACC’S parameters,

Sharp’s admittance parameters, and so on. We have ascertained

that our calculation of ACC’S characteristic points coincides with

ACC’S data [1, table 2] to within 0.4 percent over most of

0< b/Ag <0.5. This agreement is seen to be excellent, and it can

be concluded that our numerical analysis is verified by the

independent result. The table suggests

H,,/H,s * 1/2 H,,/H,, -+ – l/fi for b/Xg + O. (17)

Although the number of figures in the last column is not suffi-

cient for small values of b/Ag, eq. (17) leads to (H,, He, – H:,)

+ o, so tan Klee + 0. Noting this asymptotic behavior, we can

conclude from the last column that ]tan K1,, I <<1 over most of

0< b/~i,7 <0.5. Thus we can eliminate the element 1,, as a good

approximation, and write Lewin’s equivalent circuit. Leaving out

tan fclce, we obtain very simple expressions for the other elements

of Fig. 2:

b z I/H,, = B, tanKIOO= I/H<,,, = B<,

n~ E ( H,e/H,, )2 z H,, /Hs, = B,/ B,. (18)

It is easy to ascertain that these approximate expressions agree

with Lewin’s expressions ((7a) –(7c)).
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Effect of a Cochannel Signal on the Electrical Tuning

Characteristics of a Gurm Oscillator

B. N. BISWAS, S, SARKAR, AND S, CHATTERJEE,
STUDENT MEMBER. IEEE

,4mtract —New experimental observations on the pull-in as well as

hold-in characteristics of an in~ection-lock~cl microwave (Gunn) oscillator

in the presence of a cochannel signal have been reported. The analytical

treatment presented herein confirms the observations.

I. INTRODUCTION

The effect of a cochannel signal on the performance of a

microwave receiver has been studied in the past by a number of

workers [1]– [5]. All these works indicate that the interfering

signal reduces the tracking capability of an injection synchro-

nized oscillator (1S0). However, experimental results in some

cases show considerable departure from the existing concept. In

[2] the effect of a low-strength interfering tone on the tracking

behavior of an injection-locked oscillator has been considered,

and naturally the amplitude perturbation of the oscillator has

been neglected. This study found that the presence of interfer-

ence induces asymmetry in the one-sided locking range of the

oscillator. However, the two-sided locking range remains almost

constant. In [3]– [5], however, the effect of large interference has

been considered. [t has been shown that the locking range

decreases with an increase of the interference-to-carrier ratio. But

it appears that detailed experimental observations on the perfor-

mance characteristics of a microwave ISO, such as shift of the

center frequency of the oscillator in the unlocked condition and

the effect of amplitude perturbation on the locking behavior of

an 1S0 in the presence of a cochannel signal having different

detunings from the oscillator frequency, have not been reported.

The purpose of the present paper is therefore to critically exam-

ine both theoretically and experimentally these characteristics,

leading to some new findings.

II. EXPERIMEIqT

To study the effect of a cochannel signal on the performance

characteristics of an ISO, an experimental arrangement as shown

in Fig. l(a) is set up. Here, a signal generator and a Gunn
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