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the two fundamental modes.

III. PrINCIPAL RESULTS

From (15) the power division factor k may become larger than
one, in which case the power transported on guide A is negative.
This means that the power on this transmission line is trans-
ported in the — z direction. Nevertheless, inspecting both guides
together the power transport still goes in the + z direction. If k is
less than or equal to one, the magnitudes of the scattering
parameters at z =/ can be determined:

[S|={P.(z=1)/Py =/{1+kcos(nl/L)} /{1+k} (18)
| Sy |=yPy(z=1)/Py =\[{k—kcos(al/L)} /{1+k} . (19)

Fig. 2 shows a diagram of the scattering parameters versus the
normalized coupler length for a power division factor k=0.8.
Because the magnitude of S,; never becomes equal to zero, it can
be recognized that an incomplete periodical coupling is submit-
ted.

The phases of the S parameters can be calculated from the
electromagnetic fields ((4) and (5)). It has been assumed that they
have zero phases for z = 0. Therefore the phases of these fields at
z=1[ and at significant coordinates (x, y) of each line are equal
to the phases of the corresponding scattering parameters.
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If the structure is electromagnetically symmetric, PX' and PL',
as well as P and PRMY, are identical. This implies that k&
becomes one. Thus (18) and (19) of this generalized theory
converge into (1) and (2) of the common coupler theory.

The x dependences for the E, field components of the first
two single modes on the guide are shown in Figs. 3 and 4. The
superposition of these two modes described above is shown in
Fig. 5. The resulting power flow in the z direction is shown in
Fig. 6. At z=0 no part of the power is transported between
—X, € x < —X;. For increasing values of z, part of the power
flow changes to this-line, but at z= L, a nonnegligible part of
the power is still transported between +x;< x < +x,. This
demonstrates the incomplete coupling at electromagnetically
asymmetrical coupled lines.

IV. CONCLUSIONS

The method presented here is an extension of the well-known
even- and odd-mode analysis for symmetrical coupled lines. The
power consideration allows an integral formulation of the prob-
lem and can also be used for asymmetrical problems. In these
cases the coupling is incomplete in the sense that only a part of
the total power is coupled between the two guides. The principles
of such coupler applications have been demonstrated using the
example of an image guide coupler with a premagnetized ferrite
slab.
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Abstract —We examine Lewin’s theory, which describes an FE-plane
symmetrical tee junction by a peculiar equivalent circuit with only three
parameters. It is shown that although his theory is formally correct, its
circuit parameters depend on the amplitudes of reflected waves. An im-
proved theory corrects this fault.
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Fig. 1. E-plane T junction, longitudinal section. Lewin’s theory imposes the

termuinal condition that there be loads at z=d; and —d, and that the
ingoing wave fed from the upper arm have an E, of unit amplitude at y = b.
On the other hand, our theory does not use such specific boundary condi-
tions.

I. INTRODUCTION

Various circuit parameters for tee junctions have been pro-
posed. Let us consider some typical examples. Allanson, Cooper,
and Cowling (ACC) [1] proposed a simple equivalent circuit for
tee junctions by using the idea of characteristic points. If the
reference planes are located at characteristic points, ACC’s equiv-
alent circuit is composed of only a transformer and a reactance.
For an E-plane symmetrical tee and an H-plane symmetrical tee,
they determined the four parameters of two characteristic points,
the winding ratio of the transformer, and the reactance, employ-
ing a method suggested by Frank and Chu [2]. Sharp [3] devised
an excellent method of analyzing the electric performance of tees
having arbitrary cross sections. This method yields an admittance
matrix. For symmetrical tees, he determined four independent
elements of the admittance matrix. Marcuvitz [4] adopted a
variational approach for E-plane symmetrical tees and H-plane
symmetrical tees. The stationary values yield three admittances of
a w-type equivalent circuit consisting of four admittances. The
remaining one is determined by the equivalent static method.
From the w-type elements, he also calculated ACC’s parameters
and so on. Lewin [5] also treated variational equations for an
E-plane symmetrical tee, and gave a peculiar equivalent circuit
described by only three parameters. However, he did not make
any numerical calculation of the three parameters.

The tees above are symmetric. Generally, any symmetrical tee
supporting only the fundamental mode can be described by four
independent parameters. In fact, we have seen in the above that
ACC, Sharp, and Marcuvitz described symmetrical tees by four
parameters. On the other hand, Lewin represented the E-plane
symmetrical tee of Fig. 1 by a peculiar equivalent circuit with
only three parameters. This seems to be curious. The present
paper reexamines Lewin’s theory. We show that although his
theory is formally correct, his circuit parameters depend on the
amplitudes of waves reflected on the loads of Fig. 1. We give an
improved theory. Our theory yields the circuit equations in a
hybrid representation whose matrix has four independent ele-
ments. The circuit equations produce a simple equivalent circuit
(Fig. 2) that is composed of two parts of a two-port circuit and a
one-port circuit. According to the numerical calculation of the
hybrid matrix, its determinant is nearly equal to zero, so the
number of independent hybrid elements reduces to approxi-
mately three. The element /,, of Fig. 2 then vanishes. In the case
of /,, =0, Fig. 2 is equivalent to Lewin’s equivalent circuit. Thus
Lewin’s equivalent circuit with only three parameters holds ap-
proximately.
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Fig. 2 An equivalent circuit based on the circuit equations (18a) and (18b),
which is composed of two parts of a two-pott circuit and a one-port circuit;
tan Kl =(HZ - H H,)/H,, n*=(H,/H,)?/(1+tan’«l,,), b=1/H,
— n?tan Kl,,, tan :cl . Lewmn’s equivalent circuit does not have the

=1/H,,
element /,,, and his circuit elements By, By, and K? correspond to our b,
tan k/,

.. and 2n2, respectively. (Lewin orgmnally described the tee by a
three-port circuit. The equivalence of the two circuits is easily ascertained
by examining their response to excitations which are even or odd with
respect to the z coordinate.)

II. LEwIN’S THEORY

Let us briefly review Lewin’s theory for the tee of Fig. 1, and
point out that his circuit parameters depend on the amplitudes of
waves reflected on the loads. He decomposes the junction field
E(z)=[E,(y,2)],., into the even part f(z) and the odd part
8(z2); E(z)=f(2)+ g(z). The f(z) and g(z) are determined by
the integral equations obtained from a continuity condition at the
junction plane:

(A—B—f)coskz+1—-R

= 5[ 1) Grane( 7 2+ Gnel

(A+ B+ jg)sinkz

-z} dz’ (la)

b/ 4 ‘l
—K'/O g( ){ Junc("’z) Junc(Z;_z)}dZ (1b)
with
Junc(Z Z)
smn|z—z| Z exp(— I‘|z—z|)
- 2kb TA7

cos[nm/b(z+b/2)] cos[nm/b(z'+ b/2)]
T,

T,= [(nqr/b)2~ nz]l/_

Here « is the propagation constant of the fundamental mode. R
is the reflection coefficient from the junction in the upper arm,
and it is referred to y =b. It can be expressed in terms of the
junction field: '

2y

2

(1+R)/2=1/bf0”/2f(z') dz'=h (3)

The quantities f and g are constants defined by the junction
field:

fsl/bfb/zf(z’) coskz’ dz’ (4a)
0

b/2
gEl/bf / g(z)sinkz'dz’. (4b)
0
A and B are the E, amplitudes of the reflected and the propagat-
ing wave in the right arm and the left arm, respectively. Both
amplitudes are referred to the z=0 plane. They can also be
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expressed in terms of the junction field:
B-A+f=[f(1-R)(1-Ry)+ jg(R,— R)]/(1- RR))
(52)
- j(A+B)+g
=[g(1+R)(1+R,)+ jf(R,— R))]/(1- RiR,). (5b)

R, and R, are the reflection coefficients from the loads, and they
are referred to the z = 0 plane:

R =[(Z -1)/(Z +1)]exp(—2/xd,),
From the above equations, Lewin derives the following equa-

tion for the normalized input admittance Y=(1— R)/(1+ R) at
y=b in the upper arm:

Y= jB,+1/2K?
[1/2Y +5) + jBNn]/1+1/2/B(h +%)] (6)

i=1,2.

where the “circuit elements” B,, B, and K* are given by
b/2 b/2
By = (x/2h%b" dz' [ "7 dzf(2) f(2)b
o= (x/2000) [ e [ e (2) 1(2)
'{Gjunc(z;z’)_‘_GJunc(Z;—Z,)}
2y [b/2 b2
B, =(x/b’g? dz’ dzg(z')g(z)b
L= (x/b% )fo fo 5(2")5(2)

.{Gjunc(Z;Z/)_G)unc(Z;—Z/)} (7b)
K*=f%/h. (7¢)

Equation (6) for the input admittance yields Lewin’s equivalent
circuit (see Fig. 2).

All the equations above are valid. However, as will be proved
in the following, B, and K* depend on the amplitudes of
reflected waves. Thus it is impossible to regard B, and K? as
circuit elements, because the circuit elements of any linear wave-
guide should be independent of their excitation amplitudes. We
now prove this fact.

The load admittances Y; and Y; or their reflection coefficients
R, and R, are known. The amplitudes 4 and B are unknown
constants, which will be determined after the integral equations
are solved. Instead of this boundary condition, we can first give
an amplitude of the reflected wave in the right arm, and the one
in the left arm, for instance, 4 and B. In this case, 4 and B
appearing in the integral equations (la) and (1b) are previously
given constants. ¥}, Y, or Ry, R, are then unknown constants,
which will be determined after the integral equations are solved.

We now choose 4 and B as independent known constants.
Taking account of (3) and (4a), we see from (la) that f(z) is
linear with respect to (A4 — B). Equations (1b) and (4b) yield that
g(z) is proportional to (4 + B). So we can write

f(2) =f0(z)+(A——B)f1(z)
8(z) =(4+B)g(z2)

where f,(z), fi(z), and g(z) are independent of 4 and B.
Substituting (8b) into (7b) and (4b), we see that B, is indepen-
dent of 4 and B. If f,(z) =0, the same is true of B, and K2
However, this cannot happen. It is possible toput A=B=0as a
boundary condition, that is, no reflected waves in the right and
left arms. Supposing f;(z) =0, we then have R=—1 from (3).
So (1a) gets reduced to the contradictory equation 2 = 0. Thus we
conclude that f,(z) # 0. Accordingly in (7a) and (7¢) for B, and
K?, the (4— B) involved in the numerators and that in the

(72)

(82)

(8b).
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denominators cannot cancel each other. In other words, B, and
K? depend on (4 — B).

Lewin’s treatment has such a contradiction. Nonetheless we
would like to stress that his equivalent circuit holds approxi-
mately. This fact and a satisfying treatment will be given in the
next section.

III. AN IMPROVED THEORY

Our theory for the FE-plane tee will not use any specific
boundary condition such as the load admittances, so the theory
holds in any boundary condition. We introduce voltage and
current according to Schwinger [6]: current I, as the lowest mode
part of —(wp/x*)H, with angular frequency w and magnetic
permeability p, and voltage ¥, as the integral of the electric field
across the ith arm multiplied by +1 (+ for i =2, —for i=1,3).
We then have the characteristic impedance of Z=1/Y =«b.
They refer to the same planes of y=5 and z=0 as Lewin’s
planes. We also define six linear combinations as follows:

VEWNZ V=Wt WN2Z V,=(h-V)N2Z
ISEI3/\/? IeE(IZ-I-II)/\/ﬁ 105(12_11)/\/ﬁ~

)

We can freely control three independent linear combinations.
Our theory chooses I, I, and ¥, for the three combinations, and
we expand the junction field E(z) in terms of them:

JE(z) =x(e(2) L +e(2) ], — je,(2)V,).  (10)

It is easy to verify that €,(z) and €,(z) are even functions and
that ¢,(z) is an odd function. The continuity of H, at the
junction then yields three integral equations for €,,(z), M=
§,€,0.

Fu(2) =5 [ o232 e (2) e’ (11)
—b/2
with
\/?, M=s
Ju(z) ={ =/ ¥/2 cosxz, M=e (12)

M=o.

—yY/2sinkz,

Equations (11) can be easily transformed into variational equa-
tions by a standard method:

Ksz/z @ [ d2'Gunc (23 2) 4 (2) €4, (27)
-b/2 Y—b/2
5 - . (13)
b/2
I:K/ deM(Z)eM(Z):I
—b/2
with
b/2
/By =" fu(2) e (2) de. 9
—b/2

Any asymptotic field components can be expressed in terms of
the junction field E(z) and I,,,Vy, M =s,e,0. Combining the
expression with the decomposition (10), we obtain the circuit
equations in a hybrid representation:

I/S — . HSS HSE I.S
v.|” /B, H.|L

IO =- jHOOI/;

(15a)

(15b)
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TABLE 1
THEORETICAL CONSTANTS FOR THE E-PLANE SYMMETRICAL T JUNCTION
hybrid elements (HssHee-Hse?) /Hss

b/ g Hss 2 Hee V2 Hse Hoo ( = -tanxlee )
0.01 218. 218 -218. 0.00465 0

0.05 42.3 41.% -42.1 0.0231 6.0

0.10 19.3 18.6 -18.9 0.0452 0.0

6.15 11.2 10 2 ~10.7 0.0655 00

0.20 7.06 6.02 -6.51 0 0825 0.01

0.25 4.63 3 81 -4.08 0.0860 0 of

0.30 3.08 2.17 -2.57 0.104 0.01

0.35 2.04 1 28 -1 59 6.105 ¢ 02

0.40 1.30 0.729 ~0.934 0.0985 0 028

0 425 0.994 0.535 -0.683 0 0915 0 033

0 45 0.713 0.378 ~-0.465 0.0795 0 037
with

Hyy = ncff;jzf,w(z)ezv(z) dz  (M,N=s,e,0). (16)

It is easily proved with the aid of (11) that the hybrid matrix is
symmetric: H,, = Hy,,. The consideration of the parity of
fu(z) and €y (z) immediately produces H,,= H,,=0. So the
hybrid matrix has four independent elements. Note that the
diagonal elements are equal to the inverse stationary values:

Hy;y =1/By,. On the basis of the circuit equations (15a) and
(15b) we can represent the E-plane tee by a two-port circuit and
a one-port circuit. Fig. 2 is an example.

The numerical analysis of (11) and (16) produces Table 1. Here
A, =2m/k. The last column represents the determinant of the
matrix in. (15a) divided by H,,, which is equal to —tan«/,, in
Fig. 2. Each value of this table is accurate to within an error of
+1 in its last place over most of 0 < b/A, < 0.5. Using this table,
we can calculate the parameters of Fig. 2, ACC’s parameters,
Sharp’s admittance parameters, and so on. We have ascertained
that our calculation of ACC’s characteristic points coincides with
ACC’s data [1, table 2] to within 0.4 percent over most of
0 <b/A,<0.5. This agreement is seen to be excellent, and it can
be concluded that our numerical analysis is verified by the
independent result. The table suggests '

H, /H . —1/2 H,/H, - —-1/2 for b/A, = 0. (17)
Although the number of figures in the last column is not suffi-
cient for small values of b/X,, eq. (17) leads to (H,,H,, — Hz,)
— 0, so tank/,, = 0. Noting this asymptotic behavior, we can
conclude from the last column that [tanx/, | <1 over most of
0 <b/A, <0.5. Thus we can eliminate the element /,, as a good
approximation, and write Lewin’s equivalent circuit. Leaving out
tanx/,,, we obtain very simple expressions for the other elements
of Fig. 2:

tank/,,=1/H,,= B,
n’=(H,/H,)’=H,/H,=~B,/B, (18)

It is easy to ascertain that these approximate expressions agree
with Lewin’s expressions ((7a)-(7¢)).
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Effect of a Cochannel Signal on the Elecirical Tuning
Characteristics of a Gunn Oscillator

B. N. BISWAS, S. SARKAR, anD S. CHATTERIJEE,
! STUDENT MEMBER, IEEE

Abstract —New experimental observations on the pull-in as well as
hold-in characteristics of an injection-locked microwave (Gunn) oscillator
in the presence of a cochannel signal have been reported. The analytical
treatment presented herein confirms the observations.

I. INTRODUCTION

The effect of a cochannel signal on the performance of a
microwave receiver has been studied in the past by a number of
workers [1]-[5]. All these works indicate that the interfering
signal reduces the tracking capability of an injection synchro-
nized oscillator (ISO). However, experimental results in some
cases show considerable departure from the existing concept. In
[2] the effect of a low-strength interfering tone on the tracking
behavior of an injection-locked oscillator has been considered,
and naturally the amplitude perturbation of the oscillator has
been neglected. This study found that the presence of interfer-
ence induces asymmetry in the one-sided locking range of the
oscillator. However, the two-sided locking range remains almost
constant. In [3]-[5], however, the effect of large interference has
been considered. [t has been shown that the locking range
decreases with an increase of the interference-to-carrier ratio. But
it appears that detailed experimental observations on the perfor-
mance characteristics of a microwave ISO, such as shift of the
center frequency of the oscillator in the unlocked condition and
the effect of amplitude perturbation on the locking behavior of
an ISO in the presence of a cochannel signal having different
detunings from the oscillator frequency, have not been reported.
The purpose of the present paper is therefore to critically exam-
ine both theoretically and experimentally these characteristics,
leading to some new findings.

II.

To study the effect of a cochannel signal on the performance
characteristics of an ISO, an experimental arrangement as shown
in Fig. 1(a) is set up. Here, a signal generator and a Gunn

EXPERIMENT
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